

Fachgruppe Dekorative Schichtstoffplatten

Technisches Merkblatt 24

Überblick über die in

prEN 438-2:2000

beschriebenen Prüfmethoden

Stand April 2002

EN 438-2 Abschnitt	Eigenschaften	Ziel und Zweck der Prüfung	Das Wesentliche der Prüfmethode	Charakteristische Bewertung	Bemerkungen
4	Beurteilung des Aussehens	Beurteilung des Oberflächenaussehens aus Qualitätsgründen	Bewertung von Oberflächenfehlern wie Kratzer, Einschlüsse, Schmutz, Beschädigungen usw.	Punktförmige (in mm²) und li- nienförmige Defekte (in mm)	Max. Größe: 1 mm² pro m² bzw. 10 mm pro m²
5	Bestimmung der Dicke	Absicherung von Eigenschaften und Anwendungen	Die Dickenmessung erfolgt mit einem Mikrometer auf 0,01 mm genau und wird mit festgelegten Toleranzen verglichen.	Materialdicke in mm	
6	Bestimmung von Länge und Breite	Die Messung erfolgt zur Feststellung korrekter Abmessungen	Die Messung wird mit einem Band- maß oder einem Lineal auf 1 mm ge- nau vorgenommen und mit festgeleg- ten Toleranzen verglichen.	Längen- und Breitenmaß in mm	
7	Bestimmung der Geradheit der Kante	Prüfung der Geradheit der Kante (z.B. Bananenschnitt oder ähnliche Maßabweichungen)	Mit einem Metalllineal wird allseitig die maximale Abweichung von der Geradheit auf 0,5 mm genau gemes- sen.	Maximale Abweichung zwischen Lineal und Plattenkante in mm	Es gibt konvexe und konkave Abweichungen
8	Bestimmung der Rechtwinkligkeit	Feststellung der Rechtwinkligkeit	Ermittlung der Abweichungen mit Hilfe eines Anschlagwinkels.	Die maximale Abweichung von der Rechtwinkligkeit wird für die jeweils diagonal gegenüber- liegenden Ecken festgehalten.	
9	Bestimmung der Ebenheit	Die Ebenheit wird ist für gutes Handling und gute Bearbeitbar- keit erforderlich.	Messung des Verzugs (Ebenheitsabweichung) mit einer Verzugsmessvorrichtung an der Stelle der größten Verformung	Maximale Ebenheitsabweichung	Die Messung erfolgt mit der konkaven Plattenseite nach oben.
10	Verhalten bei Oberflächenab- rieb	Simulation der Beanspruchung der Laminatoberfläche im täglichen Gebrauch durch scheuernde Gegenstände (z.B. Töpfe), die das dekorative Aussehen beeinflussen könnte (Tischplatten, Regale, Küchenarbeitsplatten).	Der Oberflächenabrieb wird durch ein rotierendes Reibrad hervorgerufen, das mit Schmirgelpapier bestückt ist (Wechsel alle 500 Umdrehungen).	Die Anzahl der Umdrehungen bis zum ersten klar sichtbaren Abrieb wird als IP, die Anzahl bis zum vollständigen Abrieb als FP bezeichnet. Das Verhalten bei Oberflächenabrieb stellt sich als (IP + FP):2 dar.	Die in EN 438 gesetzten Grenzewerte basieren auf langjährigen Erfahrungen in den verschiedenen Anwen- dungsgebiete. Der Test kann nicht auf Fußbodenlaminate übertragen werden.
11	Verhalten bei Abriebbean- spruchung (Fuβbodenquali- tät)	Nachahmung der Beanspruchbarkeit der Oberfläche des Fußbodenlaminats durch Schuhe, Stühle, Spielzeug usw.	Der Abrieb wird durch einen rotierendes Reibrad hervorgerufen, das mit Schmirgelpapier bestückt ist (Wechsel alle 200 Umdrehungen).	Die Anzahl der Umdrehungen bis zum ersten klar sichtbaren Abrieb des Dekors, wird als IP (Eintrittspunkt) bezeichnet. Fünf Abriebklassen sind definiert.	Es wird der gleiche Versuchsaufbau wie in Abschnitt 10 verwendet, jedoch unterscheiden sich Vorgehensweise und Ergebnisse.
12	Verhalten gegen-	Siedendes Wasser beeinflusst nur	Die Auswirkungen nach zweistündi-	Die Wasseraufnahme des Prüf-	Eine Grenzwert für die

EN 438-2 Abschnitt	Eigenschaften	Ziel und Zweck der Prüfung	Das Wesentliche der Prüfmethode	Charakteristische Bewertung	Bemerkungen
	über kochendem Wasser	das Verhalten fehlerhaft herge- stellten Platten.	gem Eintauchen in siedendes Wasser auf den Prüfkörper werden durch Massezunahme, Kantenquellung und optische Veraänderungen des Er- scheinungsbilds festgestellt.	körpers wird als Prozentsatz aus Masse- und Dickenzunahme be- rechnet. Oberflächenveränderungen wer- den an Hand einer fünfstufigen Skala bewertet.	Masse und Dickenzunahme wird nur bei Kompaktlaminaten gesetzt.
13	Verhalten des Trägers gegen- über Wasser- dampf	Die meisten Holzwerkstoffe rea- gieren sehr empfindlich auf Wasserdampf. Diese Methode prüft die Schutzfunktion des La- minats.	Eine kreisförmige Nut wird in die Oberfläche des Probekörpers gefräst, bis der Trägerwerkstoff freigelegt ist. Die offene Nut wird für eine Stunde dem Wasserdampf ausgesetzt.	Der Dickenzuwachs in Millimeter, der durch die Dampfexposition verursacht wurde, wird dokumentiert.	
14	Verhalten (der Laminatoberflä- che) gegenüber Wasserdampf	Der Test ermittelt die Beständig- keit des Laminats gegen Wasser- dampf, der allgemein z.B. in Kü- chen, Bädern, Gaststätten auftritt.	Ein Prüfkörper wird für eine Stunde über der Öffnung eines Behälters befestigt, der kochendes Wasser ent- hält, so dass die dekorative Oberfläche dem Wasserdampf ausgesetzt ist.	Die Veränderung der Oberflächenoptik wird mittels einer 5-stufigen Bewertungsskala beurteilt.	
15	Beständigkeit ge- genüber Feuch- tigkeit (Außenqualität)	Der Test definiert die Beständig- keit von Kompaktschichtstoffen, indem diese Feuchtigkeitsbedin- gungen, vergleichbar mit Regen, Kondenswasser usw., ausgesetzt werden.	Schichtstoffprüfkörper in Außenqualität werden 48 Stunden in Wasser von 65 °C gelagert und danach auf Veränderungen in Gewicht und Erscheinungsbild überprüft.	Die Massezunahme wird in Prozent ausgedrückt. Die optische Veränderung wird mittels einer fünfstufigen Skala bewertet.	Für verschiedene Dickenbereiche und Typen gelten unterschiedliche Grenzwerte.
16	Verhalten gegen- über trockener Wärme	Mit diesem Labortest wird die Beanspruchbarkeit der Oberflä- che durch heiße Töpfe oder Pfannen simuliert.	Ein ölgefülltes Gefäß wird auf 180 °C erhitzt und dann für 20 Minuten auf einer HPL-beschichteten Spanplatte abgestellt.	Die Oberflächenveränderungen werden mittels einer fünfstufigen Bewertungsskala angegeben.	
17	Maßänderung bei erhöhter Temperatur	Das Dimensionsänderungsverhalten, ermittelt bei extremer Trockenheit bzw. Feuchte und erhöhter Temperatur, simuliert den Einfluss von extremen natürlichen Klimaschwankungen.	HPL-Proben werden 24 Std. bei 70 °C in einen Ofen gelegt, anschließend für 4 Tage in eine klimatisierte Kammer bei 40 °C und einer rel. Luftfeuchte von 90 - 95 % gelagert. Die natürlichen Klimaeinflüsse werden so beschleunigt simuliert.	Die Dimensionsänderungen längs und quer zur Herstellrichtung werden in Prozent angegeben.	Für Dünnlaminate und Kompakt-HPL gelten unterschiedliche Ausdehnungswerte. Fußbodenqualitäten zeigen geringere Dimensionsänderungen als Standardlaminate.
18	Maßänderung bei Umgebungs- temperatur	Die Prüfung unter trockenen und feuchten Klimabedingungen ist sinvoll, um die tatsächliche Di-	Die Dimensionsstabilität wird ermittelt durch Messungen nach je 7 Tagen Lagerzeit bei 23 °C und 32 % rel.	Die Dimensionsänderungen längs und quer zur Herstellrichtung werden in Prozent	Diese Prüfmethode kann be- darfsweise angewendet wer- den.

EN 438-2 Abschnitt	Eigenschaften	Ziel und Zweck der Prüfung	Das Wesentliche der Prüfmethode	Charakteristische Bewertung	Bemerkungen
		mensionsänderung abschätzen zu können.	Luftfeuchte sowie 23 °C und 90 % rel. Luftfeuchte im Vergleich zum Norm- klima (23/50).	angegeben.	
19	Verhalten bei schnellem Kli- mawechsel (Außenqualität)	Um praktische Informationen über das Verhalten von HPL in der Außenanwendung zu erhalten, werden Proben einem schnellen Wechsel von Temperatur und Luftfeuchtigkeit ausgesetzt.	Die Prüfeinrichtung besteht aus Kälte- und Klimakammer sowie Wärme- schrank. Darin werden HPL während 20 Tagen großen Temperaturwechseln (80 °C / -20 °C) und Trocken-/ Nass- Umgebungen ausgesetzt.	Bewertet werden die Änderungen der Biegefestigkeit sowie des Biege-E-Moduls. Die Änderung des Aussehens wird ebenfalls beurteilt.	
20	Verhalten ge- genüber Stoß- beanspruchung mit einer kleinen Kugel	Herunterfallende harte Gegenstände (z.B. Werkzeuge, Haushaltsgegenstände) können die Oberfläche von Fußböden und Möbeln beschädigen. Das Prüfverfahren bietet eine Methode, die Widerstandsfähigkeit der HPL zu demonstrieren.	Die Oberfläche eines HPL-Elementes (= HPL auf Spanplatte) wird mit dem Stoß einer 5-mm-Stahlkugel beansprucht. Die Stoßkraft wird erhöht, bis eine sichtbare Beschädigung erzeugt wurde.	Die höchste Stoßkraft, die bei fünf Versuchen keine Beschädigung verursacht, ist das Prüfergebnis.	Nur für Laminate mit Materialdicken < 2 mm, die zum Verkleben auf Trägerwerkstoffe vorgesehen sind.
21	Verhalten gegenüber Stoßbeanspruchung mit einer großen Kugel	Fallende stumpfe Gegenstände können im täglichen Gebrauch die dekorativen Elementeoberflächen beschädigen. Das Prüfverfahren bietet eine Methode, die Stoßfestigkeit einer HPL zu zeigen	Eine 324 g-Stahlkugel (42,8 mm) fällt aus zunehmender Höhe auf die Oberfläche, bis eine Beschädigung sichtbar wird.	Die Stoßfestigkeit wird als ma- ximale Fallhöhe festgelegt, wenn bei fünf aufeinander folgenden Aufprallvorgängen keine Oberflächenbeschädigung auftritt.	Das Prüfverfahren ermittelt die Stoßfestigkeit von Lami- naten, die auf Trägerwerk- stoffe verklebt sind, sowie von Kompaktplatten.
22	Verhalten bei Stoßbeanspru- chung mit großer Kugel (Fußbodenqua- lität)	Im täglichen Gebrauch können herabfallende stumpfe Gegenstände die dekorative Oberfläche von Laminatböden beschädigen. Das Verfahren misst die Stoßfestigkeit des Fußbodenelements.	Eine Stahlkugel (Gewicht 324 g, Durchmesser 42,8 mm) fällt aus zunehmender Höhe auf die Oberfläche, bis eine Beschädigung sichtbar wird.	Das Ergebnis ist die maximale Höhe, bei der in fünf aufeinander folgenden Falltests keine sichtbare Oberflächenbeschädi- gung oder ein Eindruck von maximal 10 mm Durchmesser entsteht	Das Prüfverfahren ermittelt die Stoßfestigkeit des ge- samten Fußbodenelements (Laminat, Klebstoff und Trä- gerplatte).
23	Rissanfälligkeit unter Spannung	Die Methode prüft die Rissan- fälligkeit dünner Laminate bei Dimensionsänderung durch Ver- ringerung der Luftfeuchtigkeit	Ein Probekörper mit einem gebohrten Loch wird in eine Vorrichtung aus Stahl eingespannt. Nach zusätzlicher Temperaturbelastung bei 6 Std. 50 °C	Die Anfälligkeit gegen Rissbildung wird visuell geprüft und nach einer fünfstufigen Bewertungsskala angegeben.	Nur für dünne Laminate (≤ 2 mm)

EN 438-2 Abschnitt	Eigenschaften	Ziel und Zweck der Prüfung	Das Wesentliche der Prüfmethode	Charakteristische Bewertung	Bemerkungen
			wird das Muster beurteilt.		
24	Spannungsriss- anfälligkeit (Kompaktlami- nate)	Die Methode betrachtet mögliche Rissbildungen von Kompaktla- minaten in sehr trockener Umge- bung	Ein Probekörper wird 20 Stunden trockener Wärme von 80 °C ausgesetzt.	Die Anfälligkeit gegen Rissbildung wird visuell geprüft und an Hand einer fünfstufigen Bewertungsskala angegeben.	Nur für Kompakt-HPL (Dicke > 2 mm)
25	Verhalten gegenüber Kratzbeanspruchung	Die mit diesem Test ermittelte Kratzfestigkeit der Oberfläche ist in allen vertikalen und horizon- talen Anwendungen eine wichtige Eigenschaft von Schichtstoffen.	Die Oberfläche wird in abgestuften Schritten mit steigenden Gewichts- kräften über eine Diamantnadel mit definierter Geometrie belastet.	Das Verhalten einer Dekorober- fläche gegenüber Kratzbean- spruchung wird nach diesem Test als Zahl in Newton angege- ben, bei der die maximale Last keinen kontinuierlichen Kratzer in der Oberfläche verursacht.	
26	Fleckenunemp- findlichkeit	Zur Prüfung der Fleckenunemp- findlichkeit von Schichtstoffen werden als Prüfmittel Chemika- lien verwendet werden, die all- täglich in Bereichen zur Anwen- dung kommen, in denen Hygiene und Reinigungsfähigkeit wichtige Eigenschaften sind.	Die Oberfläche des Prüfkörpers wird mit gebräuchlichen Chemikalien in Kontakt gebracht.	Nach der Kontaktzeit werden die Prüfkörper gereinigt und visuell begutachtet. Oberflächenveränderungen werden nach einer fünfstufige Skala bewertet.	
27	Lichtechtheit (Xenontest)	Der Lichtechtheitstest gibt Informationen darüber, wie sich die Farbe der Laminate bei Einwirken von Tageslicht verhält.	An Laminaten wird durch die Bestrahlung mit einer Xenonlampe eine lang anhaltende Einwirkung von Tageslicht simuliert.	Das Veändern der Farben wird im Vergleich zu einem mitgeprüften Standard ausgedrückt.	Dieser Test ist anwendbar bei HPL für Inneneinrich- tungen.
28	Verhaltengegen- über UV- Licht (nur für Außen- qualität)	Diese Prüfung gibt Auskunft über die Alterungsbeständigkeit der dekorativen Oberfläche und den zu erwartenden Reinigungs- aufwand.	Probekörper werden UV-Strahlung und Feuchtigkeit ausgesetzt, wodurch der natürliche Oberflächenabbau der Polymermatrix unter Außenbereichsbedingungen simuliert wird. Die Prüfdauer kann gemäß zwei Anforderungsklassen ausgewählt werden.	Der Oberflächenabbau wird hinsichtlich des Kontrastes zwischen bestrahlten und nicht bestrahlten Probekörpern sowie hinsichtlich der Oberflächenerscheinung gemäß einer 5 Stufen-Skala ausgewertet.	
29	Beständigkeit ge- genüber künstli- cher Bewitterung (nur für Außen- qualität)	Die künstliche Bewitterung gibt Auskunft über die Langzeitbe- ständigkeit dekorativer Oberflä- chen im Außeneinsatz	Proben werden Zyklen von künstlichem Sonnenlicht und Regen ausgesetzt. Die Prüfdauer kann gemäß zwei Anforderungsklassen ausgewählt werden.	Der Oberflächenabbau wird hinsichtlich des Kontrastes zwischen bestrahlten und nicht bestrahlten Probekörpern sowie der Oberflächenerscheinung gemäßeiner 5-Stufen-Skala ausge-	

EN 438-2 Abschnitt	Eigenschaften	Ziel und Zweck der Prüfung	Das Wesentliche der Prüfmethode	Charakteristische Bewertung	Bemerkungen
				wertet.	
30	Verhalten gegen- über Zigaretten- glut	Diese Prüfung simuliert den ty- pischen Fall einer auf der Ar- beitsfläche oder dem Fußboden brennenden Zigarette	Eine brennende Zigarette wird auf der Oberfläche der mit einer Spanplatte verklebten HPL platziert	Das Ergebnis wird hinsichtlich der entstandenen Beschädigung der Oberfläche gemäß einer fünf- stufigen Skala ausgewertet	
31	Nachformbarkeit (Verfahren A)	Prüfung des Biegeverhaltens von nachformbarem HPL unter Wär- meeinwirkung zur Beurteilung der Verformbarkeit.	Durch Heizstrahler wird die Dekorseite von Prüfkörpern erwärmt. Nach Erreichen der Prüftemperatur (163 °C) erfolgt die Biegung längs und quer im	Die verformten Prüfkörper werden visuell auf Oberflächenveränderungen <i>u</i> ntersucht.	Verfahren A (Heizstrahler und Biegeapparatur sind getrennt) wird üblicherweise in den USA angewendet.
32	Nachformbarkeit (Verfahren B)		vorgeschriebenen Radius mittels einer Form im Winkel vom 90°. Nach dem Abkühlen erfolgt die Beurteilung des Biegeradius.		Verfahren B (Strahler und Biegapparatur sind eine Ein- heit) wird hauptsächlich in Europa benutzt
33	Widerstandsfä- higkeit gegen Blasenbildung beim Nachfor- men (Verfahren A)	Prüfung des Biegeverhaltens nachformbarer Schichtstoffe un- ter Wärmeeinwirkung zum Fest- legen der Parameter von Postfor- ming-Anlagen (Ergänzung zum Abschnitt 31).	Die Dekorseite der Proben wird durch Heizstrahler erwärmt. Die Zeit bis zum Erreichen der Formbarkeit sowie bis zur Blasenbildung und die Zeitspanne dazwischen wer-	Das Ergebnis ist Ausdruck des Zeit-Intervalls zwischen Form- barkeits-Temperatur und Beginn der Blasenbildung.	Alternative zu dem in Abschnitt 34 beschriebenen Verfahren B
34	Widerstandsfä- higkeit gegen Blasenbildung beim Nachfor- men (Verfahren B)	Prüfung des Biegeverhaltens nachformbarer Schichtstoffe unter Wärmeeinwirkung zum Festlegen der Parameter von Postforming-Anlagen (Ergänzung zum Abschnitt 32).	den gemessen.		Alternative zu dem in Abschnitt 33 beschriebenen Verfahren A

$\pmb{Anhang}\text{ ,,} Technische Merkbl\"{atter} ``$

(Fassung November 2000)

Bisher sir	nd folgende Merkblätter erschienen:		
	atenblatt für HPL-Platten November 1997)	Blatt 11:	Tabelle für die Klebung von dekorativen Hochdruck-Schichtpressstoffplatten (HPL) (Fassung November 1998)
	ntenblatt für HPL-Elemente November 1997)	Blatt 12:	Arbeitsplatten mit HPL-Oberflächen (Fassung November 1998)
	ne Verarbeitungsempfehlungen für HPL <i>März 1989)</i>	Blatt 13:	Verarbeitungsempfehlungen für Schichtstoffe mit Farbkern (Fassung April 1991)
Spezielle	Empfehlungen:		
Blatt 1:	Anwendung von HPL in Feucht- und Nassräumen	Blatt 14:	Elektrische Eigenschaften von HPL (Fassung Oktober 1992)
	(Fassung Oktober 1992)	Blatt 15:	Kompaktformteile (Fassung April 1991)
Blatt 2:	Chemische Beständigkeit und hygienische Eigenschaften von HPL (Fassung Oktober 1992)	Blatt 16:	HPL in der Außenanwendung (Fassung Januar 1995)
Blatt 3:	Kantenbeschichtungen an HPL-Elementen	Blatt 17:	Hochdrucklaminatfußböden (Fassung November 1995)
Blatt 4:	(Fassung August 2000) Verarbeitung von HPL mit minerali-	Blatt 18:	Laboreinrichtungen mit HPL (Fassung April 1996)
	schen Trägermaterialien (Fassung Mai 1989)	Blatt 19:	Büroausstattungen mit HPL (Fassung 1997)
Blatt 5:	Verarbeitung von nachformbaren HPL (Fassung Oktober 1987)	Blatt 20:	Das Brandverhalten von dekorativen Schichtstoffplatten (HPL)
Blatt 6:	Verarbeitung von HPL-Kompaktplatten (Fassung November 1989)		(Fassung November 1998)
Blatt 7:	Anwendungsmöglichkeiten für HPL (Fassung Januar 1995)	Blatt 21:	Wandbekleidungen (Fassung November 1998)
Blatt 8:	Reinigung von HPL-Oberflächen (Fassung April 2000)	Blatt 22:	HPL-Doppelböden (Fassung November 2000)
Blatt 9:	Die Verarbeitung von Schichtstoffen (HPL) mit metallischen Trägermateria-	Blatt 23:	Renovierung im Bauwesen (Fassung April 2001)
	lien (Fassung Mai 1989)	Blatt 24:	Überblick über die in prEN 438-2: beschriebenen Prüfmethoden
Blatt 10:	HPL in Badezimmern		(Fassung April 2002)